POLA BILANGAN
Pertemuan 1
Pengertian Pola Bilangan
Definisi pola bilangan matematika adalah susunan dari beberapa angka yang dapat membentuk pola tertentu. Pola bilangan juga bisa diartikan sebagai suatu susunan bilangan yang memiliki bentuk teratur atau suatu bilangan yang tersusun dari beberapa bilangan lain yang membentuk suatu pola.
Macam Macam Pola Bilangan
Berikut ini jenis pola bilangan dalam matematika dan contohnya:
- Pola Bilangan Ganjil
Pengertian pola bilangan ganjil adalah pola bilangan yang terbentuk dari bilangan-bilangan ganjil. Sedangkan pengertian bilangan ganjil adalah suatu bilangan asli yang tidak habis dibagi dua ataupun kelipatannya.
Pola bilangan ganjil adalah 1, 3, 5, 7,……..
Gambar Pola Bilangan Ganjil
Rumus Pola Bilangan ganjil
1 , 3 , 5 , 7 , . . . , n , maka rumus pola bilangan ganjil ke n adalah:
Un = 2.n-1
Contoh Soal Pola Bilangan Ganjil
1 , 3 , 5 , 7 , . . . , ke 12. Berapakah pola bilangan ganjil ke 12 ?
Jawab :
Un = 2.n-1
U12 = 2.12-1
U12 = 24 -1 = 23
U12 = 2.12-1
U12 = 24 -1 = 23
- Pola Bilangan Genap
Pengertian pola bilangan genap adalah pola bilangan yang terbentuk dari bilangan-bilangan genap . Bilangan genap adalah bilangan asli yang habis dibagi dua atau kelipatannya .
Pola bilangan genap adalah 2 , 4 , 6 , 8 , . . .
Gambar Pola Bilangan Genap
Rumus Pola Bilangan Genap
Baca Juga : Bilangan Pangkat Pecahan
2 , 4 , 6 , 8 , . . . . , n maka rumus pola bilangan genap ke n adalah:
Un = 2n
Contoh Soal Pola Bilangan Genap
2 , 4 , 6 , 8 , . . . ke 12 . Berapakah pola bilangan genap ke 12 ?
Jawab :
Un = 2n
U12 = 2 x 12
U12 = 24
U12 = 2 x 12
U12 = 24
- Pola Bilangan Persegi
Pengertian pola bilangan persegi adalah suatu barisan bilangan yang membentuk suatu pola persegi. Pola bilangan persegi adalah 1 , 4 , 9 , 16 , 25 , . . .
Gambar Pola Bilangan Persegi
Rumus Pola Bilangan Persegi
1 , 4 , 9 , 16 , 25 , 36 , . . . , n maka rumus untuk mencari pola bilangan persegi ke-n adalah:
Un = n2
Contoh Pola Bilangan Persegi
Dari suatu barisan bilangan 1 , 4 , 9 , 16 , 25 , 36 , . . . ,ke 12 . Berapakah pola bilangan ke 12 dalam pola bilangan persegi ?
Jawab :
Un = n2
U12 = 122
U12 = 144
U12 = 122
U12 = 144
- Pola Bilangan Persegi Panjang
Pengertian pola bilangan persegi panjang adalah suatu barisan bilangan yang membentuk pola persegi panjang . Pola persegi panjang adalah 2 , 6 , 12 , 20 , 30 , . . .
Gambar Pola Bilangan Persegi Panjang
Rumus Pola Bilangan Persegi Panjang
2 , 6 , 12 , 20 , 30 , . . . n , maka rumus pola bilangan persegi panjang ke-n adalah:
Un = n . n + 1
Contoh Soal Pola Bilangan Persegi Panjang
Dari suatu barisan bilangan 2 , 6 , 12 , 20 , 30 , . . . , ke 12 . Berapakah pola bilangan persegi ke 12?
Jawab :
Un = n . n+ 1
U12 = 10 . 12 + 1
U12 = 10 . 13
U12 = 130
U12 = 10 . 12 + 1
U12 = 10 . 13
U12 = 130
- Pola Bilangan Segitiga
Pengertian bola bilangan segitiga adalah suatu barisan bilangan yang membentuk sebuah pola bilangan segitiga. Pola bilangan segitiga adalah 1 , 3 , 6 , 10 , 15 , . . .
Gambar Pola Bilangan Segitiga
Rumus Pola Bilangan Segitiga
1 , 3 , 6 , 10 , 15 , 21 , 28 , 36 , . . . , ke n . Maka rumus pola bilangan segitiga ke n adalah:
Un = 1/2 n ( n + 1 )
Contoh Soal Pola Bilangan Segitiga
Dari suatu barisan bilangan 1 , 3 , 6 , 10 , 15 , 21 , 28 , 36 , . . . , ke 12 . Berapakah pola bilangan segitiga ke 12?
Jawab :
Un = 1/2 n ( n + 1 )
U12 = 1/2 . 12 (12 + 1)
U12 = 6 (13)
U12 = 78
U12 = 1/2 . 12 (12 + 1)
U12 = 6 (13)
U12 = 78
- Pola Bilangan Fibonacci
Pengertian pola bilangan fibonacci adalah suatu bilangan yang setiap sukunya merupakan jumlah dari dua suku di depannya. Pola bilangan Fibonacci adalah 1, 1, 2, 3, 5, 8, 13, 21, 34, ……
Perlu diketahui, 2 diperoleh dari hasil 1 + 1, 3 diperoleh dari hasil 2 + 1, 5 diperoleh dari hasil 3 + 2 dan seterusnya.
Rumus mencari suku ke-n pola bilangan fibonacci adalah Un = Un-1 + Un-2
Gambar Pola Bilangan Fibonacci
- Pola Bilangan Segitiga Pascal
Bilangan pascal ditemukan oleh oleh orang Prancis bernama Blaise Pascal, sehingga dinamakan bilangan pascal. Bilangan pascal adalah bilangan yang terbentuk dari sebuah aturan geometri yang berisi susunan koefisien binomial yang bentuknya menyerupai segitiga.
Di dalam segitiga pascal, bilangan yang terdapat pada satu baris yang sama dijumlahkan menghasilkan bilangan yang ada di baris bawahnya. Jadi, pengertian pola bilangan pascal adalah suatu pola yang tersusun dari beberapa angka berdasarkan rumus: (perhatikan gambar pola bilangan pascal)
Pola bilangan pascal adalah 1, 2, 4, 8, 16, 24, 32, 64,…..
Rumus pola bilangan pascal : 2n-1
Contoh soal pola bilangan pascal:
tentukan suku ke 12 pola bilangan pascal:
jawab:
Un = 2n-1
U12 = 212-1
U12 = 211
u12 = 2048
Un = 2n-1
U12 = 212-1
U12 = 211
u12 = 2048
- Pola Bilangan Pangkat Tiga
Pola bilangan pangkat tiga adalah pola bilangan dimana bilangan setelahnya merupakan hasil dari pangkat tiga dari bilangan sebelumnya. Contoh pola bilangan pangkat tiga adalah 2, 8, 512, 134217728, …..
Keterangan : 8 diperoleh dari hasil 2 pangkat tiga, 512 diperoleh dari hasil 8 pangkat tiga, dan seterusnya.
- Pola Bilangan Aritmatika
Pengertian pola bilangan aritmatika adalah pola bilangan dimana bilangan sebelum dan sesudahnya memiliki selisih yang sama. Contoh pola bilangan aritmatika adalah 2, 5, 8, 11, 14, 17, ….
Suku pertama dalam bilangan aritmatika disebut dengan awal ( a ) atau U1, sedangkan suku kedua adalah U2 dan seterusnya.
Selisih dalam barisan aritmatika disebut dengan beda dan dilambangkan dengan b.
Karena bilangan sebelum dan sesudahnya memiliki selisih yang sama, maka b = U2 – U1 = U3 – U2 = U4 – U3 = U5 – U4 = U6 – U5 = 3
Rumus mencari suku ke-n adalah Un = a + (n -1) b
Rumus mencari jumlah n suku pertama adalah Sn = n/2 (a + Un) atau Sn = n/2 (2 a + ( n-1 ) b )
Karena bilangan sebelum dan sesudahnya memiliki selisih yang sama, maka b = U2 – U1 = U3 – U2 = U4 – U3 = U5 – U4 = U6 – U5 = 3
Rumus mencari suku ke-n adalah Un = a + (n -1) b
Rumus mencari jumlah n suku pertama adalah Sn = n/2 (a + Un) atau Sn = n/2 (2 a + ( n-1 ) b )
Contoh Pola Bilangan Aritmatika
- Pola Bilangan Geometri
Pengertian pola bilangan geometri adalah suatu bilangan hasil perkalian bilangan sebelumnya dengan suatu bilangan yang tetap.
Rumus suku ke-n adalah Un = arn-1
Contoh Pola Bilangan Geometri
Anita puji
ReplyDelete8B
03
Faqih krisnanto nugraha
ReplyDelete8B
16
Mala nur khasanah
ReplyDeleteDWI SETIYATMOKO
ReplyDelete13
8B
Anastasya Nasyiila f
ReplyDelete02
8B
Dhiahilda
ReplyDelete12
8B
Athallah Kamil F
ReplyDelete8B
06
Oktavia nur ramadhani
ReplyDelete28
8B
Oktavia nur ramadhani
ReplyDelete28
8B
Mala nur khasanah
ReplyDeleteno=21
Kelas 8B
Oktavia nur ramadhani
ReplyDelete28
8B
Ranoyo aji
ReplyDelete31 (31)
Naila syifa nafi'ah
ReplyDeleteNo:28
Kls:8A
Dzaki anggaswara
ReplyDeleteNo:14
8B
Bimoprayogo
ReplyDelete8a
15
Raditya Afreza firansyah
ReplyDelete8b/29
Nicko Shiva Diantoro
ReplyDelete8A
30
Raditya Afreza firansyah
ReplyDelete8b/29
Anggun Tri Dewi S
ReplyDelete8A
8
Anggun Tri Dewi S
ReplyDelete8A
8
Bagas arjunanto
ReplyDelete8b
7
Ilham Firmansyah
ReplyDelete8a
23